您的位置:首页 > 会议日程
检索:
选择日期:
  • 不限
  • 2025-07-11 [星期五]
  • 2025-07-12 [星期六]
  • 2025-07-13 [星期日]
选择会场:
  • 不限
  • 金色大厅 Golden Hall
  • 金色大厅1+2 Golden Hall 1+2
  • 金色大厅3 Golden Hall 3
  • 祥云厅 Xiangyun Hall
  • 紫光厅A Ziguang Hall A
  • 紫光厅B Ziguang Hall B
  • 紫光厅C Ziguang Hall C
  • 东方厅A Dongfang Hall A
  • 东方厅B Dongfang Hall B
  • 百源厅 Baiyuan Hall
  • 紫光厅E Ziguang Hall E
  • 怀德厅 Huaide Hall
  • 行德厅 Xingde Hall
  • 忠德厅 Zhongde Hall
  • B会议室 Meeting Room B
  • 至诚室 Zhicheng Room
  • 文德厅 Wende Hall
  • 紫光厅D Ziguang Hall D
  • C会议室 Meeting Room C
  • D会议室 Meeting Room D
  • 信德厅 Xinde Hall
  • 2楼海报展示区 Poster Exhibition Area (2nd floor)

2025-07-13 星期日

至诚室 Zhicheng Room

08:30-10:10 | CS025: Modern Statistical Learning for High-Dimensional and Structured Data CS025: Modern Statistical Learning for High-Dimensional and Structured Data
编号 时间 类型 题目 讲者 单位
1 08:30-08:50 贡献报告

Multi-source Targeted Learning by High-dimensional Empirical Likelihood

詹皓翔 北京大学
Contributed Talk

Multi-source Targeted Learning by High-dimensional Empirical Likelihood

Haoxiang Zhan Peking University
2 08:50-09:10 贡献报告

Truncated fusion learning on supervised clustering and its fast stagewise algorithm

李乐天 中国科学技术大学
Contributed Talk

Truncated fusion learning on supervised clustering and its fast stagewise algorithm

Letian Li ustc
3 09:10-09:30 贡献报告

Feature Selection for P300 Detection Improvement

田 兵 厦门大学
Contributed Talk

Feature Selection for P300 Detection Improvement

Bing Tian Xiamen University
4 09:30-09:50 贡献报告

Pursuing homogeneity and sparsity in simultaneous quantile regression

曾 珍 南京财经大学
Contributed Talk

Pursuing homogeneity and sparsity in simultaneous quantile regression

Zhen Zeng Nanjing University of Finance and Economics
5 09:50-10:10 贡献报告

On non-redundant and linear operator-based nonlinear dimension reduction

叶舟夫 浙江大学
Contributed Talk

On non-redundant and linear operator-based nonlinear dimension reduction

Zhoufu Ye Zhejiang University
10:30-12:10 | CS031: Advances in Graph-Based Learning and Network Analysis CS031: Advances in Graph-Based Learning and Network Analysis
编号 时间 类型 题目 讲者 单位
1 10:30-10:50 贡献报告

Identification of influential nodes in complex networks based on graph autoencoder

周钰凯 西北工业大学
Contributed Talk

Identification of influential nodes in complex networks based on graph autoencoder

Yukai Zhou northwestern polytechnical university
2 10:50-11:10 贡献报告

A Wasserstein distance-based spectral clustering method for transaction data analysis

朱映秋 对外经济贸易大学
Contributed Talk

A Wasserstein distance-based spectral clustering method for transaction data analysis

Yingqiu Zhu University of International Business and Economics
3 11:10-11:30 贡献报告

Network Perturbation Aggregation in Graphon Estimation

Huimin Cheng Boston University
Contributed Talk

Network Perturbation Aggregation in Graphon Estimation

Huimin Cheng Boston University
4 11:30-11:50 贡献报告

HALO: Hardness-Aware Bilevel-Inspired Contrastive Graph Clustering

朱雨晨 西北工业大学
Contributed Talk

HALO: Hardness-Aware Bilevel-Inspired Contrastive Graph Clustering

Yuchen Zhu Northwestern Polytechnical University
5 11:50-12:10 贡献报告

基于知识增强和图注意力网络的方面级情感分析

凤丽洲 天津财经大学
Contributed Talk

基于知识增强和图注意力网络的方面级情感分析

Lizhou Feng Tianjin university of finance and economics
13:30-15:10 | CS038: Recent Advances in High-Dimensional Robust Regression CS038: Recent Advances in High-Dimensional Robust Regression
编号 时间 类型 题目 讲者 单位
1 13:30-13:50 贡献报告

Efficient distributed estimation for expectile regression in increasing dimensions

李晓妍 重庆工商大学
Contributed Talk

Efficient distributed estimation for expectile regression in increasing dimensions

Xiaoyan Li Chongqing University
2 13:50-14:10 贡献报告

Estimation and inference in quantile regression for high-dimensional partially linear models

李望成 北京师范大学
Contributed Talk

Estimation and inference in quantile regression for high-dimensional partially linear models

Wangcheng Li Beijing Normal University
3 14:10-14:30 贡献报告

Communication-Efficient and Distributed-Oracle Estimation for High-Dimensional Quantile Regression

顾逸凡 中国人民大学
Contributed Talk

Communication-Efficient and Distributed-Oracle Estimation for High-Dimensional Quantile Regression

Yifan Gu Renmin University of China
4 14:30-14:50 贡献报告

线性极值分位数回归的半监督学习

姜 荣 上海对外经贸大学
Contributed Talk

Rong Jiang Shanghai University of International Business and Economics
5 14:50-15:10 贡献报告

Reduced-rank clustered coefficient regression for addressing multicollinearity in heterogeneous coefficient estimation

钟 琰 华东师范大学
Contributed Talk

Reduced-rank clustered coefficient regression for addressing multicollinearity in heterogeneous coefficient estimation

Yan Zhong East China Normal University
15:30-17:10 | CS046: Advances in High-Dimensional Statistical Learning and Inference CS046: Advances in High-Dimensional Statistical Learning and Inference
编号 时间 类型 题目 讲者 单位
1 15:30-15:50 贡献报告

Signal-Adaptive Joint Graphical Model Learning via Dynamic Regularization

刘世祥 中国人民大学
Contributed Talk

A tuning-free and scalable method for joint graphical model estimation with sharper bounds

Shixiang Liu Renmin University of China
2 15:50-16:10 贡献报告

Iterative Sure Screening Rules with Application to Accelerated Optimization of Regularized Regression

张 宁 上海对外经贸大学
Contributed Talk

Iterative Sure Screening Rules with Application to Accelerated Optimization of Regularized Regression

Ning Zhang Shanghai University of International Business and Economics
3 16:10-16:30 贡献报告

Distributed Reconstruction from Compressive Measurements: Nonconvexity and Heterogeneity

李尔博 中国人民大学
Contributed Talk

Distributed Reconstruction from Compressive Measurements: Nonconvexity and Heterogeneity

Erbo Li Renmin University of China
4 16:30-16:50 贡献报告

Causal Structure Learning of High-Dimensional Directed Acyclic Graphs with False Discovery Rate Control

康雪倩 厦门大学
Contributed Talk

Causal Structure Learning of High-Dimensional Directed Acyclic Graphs with False Discovery Rate Control

Xueqian Kang Xiamen University
5 16:50-17:10 贡献报告

Versatile Differentially Private Learning for General Loss Functions

陆启隆 北京大学
Contributed Talk

Versatile Differentially Private Learning for General Loss Functions

Qilong Lu Peking University